We extend best-subset selection to linear Multi-Task Learning (MTL), where a set of linear models are jointly trained on a collection of datasets (``tasks''). Allowing the regression coefficients of tasks to have different sparsity patterns (i.e., different supports), we propose a modeling framework for MTL that encourages models to share information across tasks, for a given covariate, through separately 1) shrinking the coefficient supports together, and/or 2) shrinking the coefficient values together. This allows models to borrow strength during variable selection even when the coefficient values differ markedly between tasks. We express our modeling framework as a Mixed-Integer Program, and propose efficient and scalable algorithms based on block coordinate descent and combinatorial local search. We show our estimator achieves statistically optimal prediction rates. Importantly, our theory characterizes how our estimator leverages the shared support information across tasks to achieve better variable selection performance. We evaluate the performance of our method in simulations and two biology applications. Our proposed approaches outperform other sparse MTL methods in variable selection and prediction accuracy. Interestingly, penalties that shrink the supports together often outperform penalties that shrink the coefficient values together. We will release an R package implementing our methods.
translated by 谷歌翻译
Modern deep learning models are over-parameterized, where the optimization setup strongly affects the generalization performance. A key element of reliable optimization for these systems is the modification of the loss function. Sharpness-Aware Minimization (SAM) modifies the underlying loss function to guide descent methods towards flatter minima, which arguably have better generalization abilities. In this paper, we focus on a variant of SAM known as mSAM, which, during training, averages the updates generated by adversarial perturbations across several disjoint shards of a mini-batch. Recent work suggests that mSAM can outperform SAM in terms of test accuracy. However, a comprehensive empirical study of mSAM is missing from the literature -- previous results have mostly been limited to specific architectures and datasets. To that end, this paper presents a thorough empirical evaluation of mSAM on various tasks and datasets. We provide a flexible implementation of mSAM and compare the generalization performance of mSAM to the performance of SAM and vanilla training on different image classification and natural language processing tasks. We also conduct careful experiments to understand the computational cost of training with mSAM, its sensitivity to hyperparameters and its correlation with the flatness of the loss landscape. Our analysis reveals that mSAM yields superior generalization performance and flatter minima, compared to SAM, across a wide range of tasks without significantly increasing computational costs.
translated by 谷歌翻译
公平定理是算法公平文献中的基本结果。它指出,在特殊情况之外,人们不能准确和同时满足公平性的所有三个共同和直观的定义 - 人口统计学奇偶,均衡的赔率和预测率的均等。这一结果促使大多数作品专注于一个或两个指标的解决方案。与其效仿,在本文中,我们提出了一个框架,该框架可以推动不可能定理的限制,以便尽可能地满足所有三个指标。我们开发了一种基于整数编程的方法,该方法可以产生一种认证的最佳后处理方法,以同时满足小违规情况下的多重公平标准。我们显示的实验表明,我们的后处理器可以同时降低模型性能的同时提高不同定义的公平性。我们还讨论了我们在模型选择和公平性解释性方面的应用程序,从而试图回答以下问题:谁是最公平的?
translated by 谷歌翻译
决策树是机器学习工具箱中最有用和最受欢迎的方法之一。在本文中,我们考虑了学习最佳决策树的问题,这是一个组合优化问题,该问题具有挑战性。文献中的一种常见方法是使用贪婪的启发式方法,这可能不是最佳的。最近,人们对使用各种方法(例如,基于整数编程,动态编程)学习最佳决策树已经引起了重大兴趣 - 为了实现计算可伸缩性,这些方法中的大多数都集中在具有二进制功能的分类任务上。在本文中,我们提出了一种基于分支机构(BNB)的新离散优化方法,以获得最佳决策树。与现有的定制方法不同,我们考虑具有连续功能的回归和分类任务。我们方法基础的基本思想是基于特征分布的分位数来拆分搜索空间 - 导致沿BNB迭代的基础优化问题的上限和下限。与现有的各种真实数据集中的浅最佳树相比,我们提出的算法Quant-BNB显示出显着的加速。
translated by 谷歌翻译
从操作的角度来看,对调查响应率的准确预测至关重要。美国人口普查局的著名漫游应用程序使用了在美国人口普查计划数据库数据中培训的原则统计模型来识别难以调查的领域。较早的众包竞赛表明,一组回归树木在预测调查率方面取得了最佳性能。但是,由于有限的解释性,无法针对预期应用程序采用相应的模型。在本文中,我们提出了新的可解释的统计方法,以高精度地预测调查中的响应率。我们研究通过$ \ ell_0 $ regularization以及提供层次结构化的变体的稀疏非参数添加剂模型,可提供增强的解释性。尽管有强大的方法论基础,这种模型在计算上可能具有挑战性 - 我们提出了学习这些模型的新可扩展算法。我们还为所提出的估计量建立了新的非反应误差界。基于美国人口普查计划数据库的实验表明,我们的方法导致高质量的预测模型,可为不同人群的不同部分可行。有趣的是,我们的方法在基于梯度增强和前馈神经网络的最先进的黑盒机器学习方法中提供了可解释性的显着提高,而不会失去预测性能。我们在Python中实现的代码实现可在https://github.com/shibalibrahim/addived-models-with-sonstructred-interactions上获得。
translated by 谷歌翻译
专家混合(MOE)架构表明有希望导致改善多任务学习(MTL)的参数共享以及缩放高容量神经网络。最先进的MOE模型使用培训稀疏门来为每个输入示例选择专家的子集。概念上吸引人的同时,现有的稀疏栅极,如TOP-K并不顺利。缺乏平滑性可以在以梯度为基础的方法培训时导致收敛和统计性能问题。在本文中,我们基于新型二进制编码配方,开发DSelect-K:用于MOE的连续微分和稀疏的浇口。门可以使用诸如随机梯度下降的一阶方法进行培训,并提供对选择的专家数量的显式控制。我们展示了DSelect-K对合成和真实MTL数据集的有效性,最高可达128美元。我们的实验表明,DSelect-k可以在流行的Moe盖茨上实现统计上显着的预测和专家选择。值得注意的是,与Top-K相比,在现实世界的大规模推荐系统中,DSelect-K可实现预测性能超过22±22℃。我们提供DSelect-K的开源实现。
translated by 谷歌翻译
线性回归是统计和相关字段中的基本建模工具。在本文中,我们研究了线性回归的重要变体,其中预测响应对部分不匹配。我们使用优化公式同时学习基础回归系数和与错配相对应的置换。问题的组合结构导致计算挑战。我们建议并研究一种简单的贪婪本地搜索算法,以解决这种优化问题,该算法具有强大的理论保证和具有吸引力的计算绩效。我们证明,与样本和特征的数量和问题数据的某些假设相比,在适当的不匹配对数的缩放缩放下;我们的本地搜索算法以线性速率收敛到几乎最佳的解决方案。特别是,在无嘈杂的情况下,我们的算法以线性收敛速率收敛到全局最佳解决方案。基于此结果,我们证明了参数估计误差的上限。我们还提出了一个近似的本地搜索步骤,使我们能够将方法扩展到更大的实例。我们进行数值实验,以收集有关我们理论结果的进一步见解,并与现有方法相比显示出令人鼓舞的性能增长。
translated by 谷歌翻译
在稀疏线性建模 - 最佳子集选择中,研究了一个看似意外的,相对不太理解的基本工具的过度选择,这最小化了对非零系数的约束的限制的剩余平方和。虽然当信噪比(SNR)高时,最佳子集选择过程通常被视为稀疏学习中的“黄金标准”,但是当SNR低时,其预测性能会恶化。特别是,它通过连续收缩方法而言,例如脊回归和套索。我们研究了高噪声制度中最佳子集选择的行为,并提出了一种基于最小二乘标准的正则化版本的替代方法。我们提出的估算员(a)在很大程度上减轻了高噪声制度的最佳次集选择的可预测性能差。 (b)相对于通过脊回归和套索的最佳预测模型,通常递送大幅稀疏模型的同时表现出有利的。我们对所提出的方法的预测性质进行广泛的理论分析,并在噪声水平高时提供相对于最佳子集选择的优越预测性能的理由。我们的估算器可以表达为混合整数二阶圆锥优化问题的解决方案,因此,来自数学优化的现代计算工具可供使用。
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译